![]() |
Author: Meike Zimmermann Date: 12.02.2026 Reading time: 7 min |
AI systems look for authority signals, not keywords. Anyone who wants to be cited as a source needs a recognizable expertise position. That position is built through brand, not volume.
Many B2B companies have successfully produced large volumes of content in recent years. The assumption: More blog posts and whitepapers lead to greater visibility. But the rules of the game have changed. Today, what matters isn't volume but relevance in the responses of generative AI systems. The result: Tried-and-true content practices are causing visibility to decline. The reason doesn't lie solely in a lack of technical optimization. It runs deeper.
Content without a recognizable brand position delivers no authority signals. For AI systems – just as for buying centers – it's interchangeable.
95% of B2B buyers plan to use generative AI in future purchasing decisions.¹ Visibility no longer comes from keyword optimization alone – but from credibility and contextual relevance. This article shows why thought leadership isn't a content format but a strategic brand decision. And why the fundamentals of B2B brand management are becoming a prerequisite for visibility in AI-powered search environments.
Content volume was the default strategy in B2B marketing for years: more blog posts, more keywords, more reach. AI systems are fundamentally changing this logic. They synthesize answers from trusted sources. Volume alone no longer suffices.
Forrester puts it succinctly: Content must answer the questions buyers actually ask – with credible, context-rich and intent-driven answers.¹ The question shifts from "How much content do we produce?" to "Why should an AI system cite us in particular?"
BCG confirms this trend: In a market flooded with AI-generated content, brand distinctiveness becomes the last scalable competitive advantage.² Paradoxical yet logical: The democratization of creativity through AI makes genuine differentiation more valuable than ever.
Authority signals don't emerge by accident. Five dimensions determine whether content is perceived as worth citing:
Topical ownership doesn't mean broad coverage but deep occupation of defined expertise fields. Companies should choose the space they want to own – and occupy it consistently.
A recognizable point of view differentiates. Content with a clear position is cited as a source more often than neutral summaries. AI systems synthesize perspectives, not summaries of summaries.
Expert validation lends content credibility. Subject matter experts as authors are an authority signal that AI systems can increasingly process.
Third-party resonance amplifies perception. Mentions by analysts, industry publications and customers strengthen the position as a trusted source.
Consistency over time builds authority. Continuous presence on defined topics has more impact than sporadic campaign peaks.
Technical optimization makes content machine-readable – through structure, schema and clarity. Authority signals make content worth citing – through expertise, consistency and conviction. Only the combination of both leads to sustainable visibility. Without a differentiated brand position, technical optimization remains ineffective.
Acht Länder, acht unterschiedliche Marketing-Prozesse – vor dieser Situation steht Manpower. Die Folge: Uneinigkeit darüber, welche Leads Priorität haben, sowie erschwertes Benchmarking und Austausch über Best Practices.
Um internationale Vergleichbarkeit zu schaffen und Lernprozesse im Unternehmen anzuregen, will das nordeuropäische Marketing-Team um Projektleiterin Tina Hingston ein länderübergreifend konsistentes Lead Scoring und Reporting einführen. Dafür holt sie sich Unterstützung des Strategiepartners andweekly.
Von der herausfordernden und zeitaufwendigen Rekrutierung geeigneter Fachkräfte sind Unternehmen in vielen Branchen und Regionen betroffen. Das Ziel von Manpower ist es, dem Personalmangel weltweit mit innovativen Lösungen zu begegnen. Die ManpowerGroup mit Hauptsitz in den USA und Niederlassungen in rund 80 Ländern zählt zu den weltweit führenden Unternehmen in der Personalbranche.
Kerngeschäft ist die Vermittlung von Fachkräften aus zahlreichen Branchen an Unternehmen, die sich nicht mit zeitaufwendigen Rekrutierungsprozessen beschäftigen wollen. Darüber hinaus hilft Manpower, kurzfristige Personalengpässe zu überbrücken und Produktionsspitzen mit geeigneten Human Resources auf Zeit abzufedern. Zum Unternehmen gehören zahlreiche Tochterunternehmen – darunter auch der IT-Dienstleister Experis, den wir bereits bei seiner Marketing-Strategie unterstützt haben.

Die ManpowerGroup unterhält in jedem Land ein eigenes Marketing-Team, das individuelle Ansätze im Online-Marketing verfolgt. Zwar wurde HubSpot als All-in-one-Plattform für Marketing in den meisten Landesgesellschaften etabliert, doch das HubSpot-Knowhow und der hinterlegte Lead-Management-Prozess sind sehr unterschiedlich.
Das Problem bei Manpower: Die uneinheitlichen Marketing-Prozesse der Landesgesellschaften führen zu inkonsistenter Lead-Qualifizierung: Ein Lead, der in einer Landesgesellschaft als Sales Ready eingestuft wird, kann in einer anderen als Marketing Qualified Lead (MQL) eingestuft werden.
Daraus ergeben sich für Manpower folgende Herausforderungen:
Mangelnde Vergleichbarkeit. Unterschiedliche Definitionen und Prozesse machen es schwierig, die Leistung und Effektivität von Marketing-Aktivitäten zwischen verschiedenen Landesgesellschaften zu vergleichen. Ohne einheitliche Standards können sie Best Practices nicht identifizieren und erfolgreiche Strategien kaum replizieren.
Schwierigkeiten bei Zusammenarbeit und Kommunikation. Inkonsistente Definitionen führen immer wieder zu Missverständnissen und Fehlkommunikation zwischen Marketing- und Vertriebsteams, insbesondere wenn diese länderübergreifend zusammenarbeiten.
Verpasste Verkaufschancen. Unterschiedliche und nicht immer optimale Definitionen von MQLs und SQLs bewirken, dass Mitarbeitende bestimmte Leads unter- oder überschätzen. Falsche Prioritäten in der Lead-Bearbeitung kosten wiederum wertvolle Ressourcen.
Standardisierung der Marketing-Automatisierungsprozesse für eine nahtlose Customer Journey in den verschiedenen Manpower-Landesgesellschaften
Entwicklung homogener Dashboards auf globaler Ebene zur einheitlichen Erfassung, Analyse und Vergleich der Performances von Marketing-Kampagnen
Optimierung der CRM-Strategie durch Implementierung von Best Practices für Lead-Erfassung, -Qualifizierung, -Scoring und Reporting mithilfe des HubSpot Marketing Hub
Erzielung von Effizienzgewinnen durch Reduzierung von Inkonsistenzen zwischen den Landesgesellschaften
Erhöhung der Transparenz zwischen den Landesgesellschaften hinsichtlich Lead-Generierung, Lead-Qualität und Marketing-Performance zur Verbesserung der Entscheidungsfindung und Performance
What B2B brand management describes as trust capital manifests in AI systems as authority signals. BCG puts it succinctly: "As AI democratizes creativity, brand distinctiveness has become the last true competitive moat."²
The data supports this: 68% of respondents name trust as the top purchase driver, and this correlates with higher citation frequency in AI responses.³ The three functional layers of a B2B brand – risk reduction, complexity reduction and trust transfer – also operate at an algorithmic level.
AI amplifies what's already there. Without a clear brand, AI scales your mediocrity – not your authority. Brand consistency is an authority signal: Contradictory messages across channels weaken perception as a reliable source.
Forrester draws a clear distinction: Much of what's labeled "thought leadership" is disguised product promotion or superficial trend commentary. Genuine thought leadership requires original insights, differentiated perspectives, long-term topic ownership – and the willingness to take uncomfortable positions.
Citability comes from practical substance: Content that third parties reference as a source. An effective B2B content strategy relies on systems, not peaks. Repetition and thematic depth build authority. Viral moments don't.
BCG recommends that CMOs find the right mix of AI-assisted and human-created content.² Human creativity and expertise remain the differentiating factor, precisely because AI can effortlessly replicate generic content.
Five concrete areas for action emerge:
Authority signals are indicators of credibility and expertise that AI systems use to identify sources worth citing. Unlike traditional SEO signals (keywords, backlinks, technical factors), they evaluate contextual relevance, consistency over time and recognizable expertise positions.
AI systems synthesize answers from trusted sources. They prioritize content with differentiated perspectives and demonstrable expertise over generic summaries – regardless of quantity.
Brand identity provides the consistent position that AI systems recognize as an authority signal. Without a clear brand, the differentiation that makes content worth citing is missing. AI amplifies what's already there: clarity or mediocrity.
Thought leadership is the content manifestation of brand management. Without a strategic brand foundation, thought leadership lacks differentiating substance. Both must be approached as an integrated whole.
Genuine thought leadership offers original insights and takes uncomfortable positions. Content marketing can also distribute generic information. The difference lies in the willingness to adopt a differentiated point of view.
The question is no longer how much content gets produced but whether it carries a recognizable position. Content without brand work scales mediocrity, not authority. Authority signals don't come from more output but from clearer expertise positions, consistent conviction and substantive depth.
This isn't a marketing task – it's a strategic business decision. Companies that neglect the fundamentals of B2B brand management won't be recognized as a source in AI-powered search systems either, regardless of how much content they produce.
¹ Forrester (2025): From Keywords To Context: Impact And Opportunity For AI-Powered Search In B2B Marketing
² Boston Consulting Group (2025): CMOs Must Protect Their Brand in an AI-First World
³ Boston Consulting Group (2025): Building Lasting Brand Equity in the Age of AI